Главная Онлайн-расчеты Научный калькулятор | |
Вспомним: апофема-высота боковой грани пирамиды, проведенная из вершины на ребро основания.
Теорема 5. Если все боковые грани пирамиды наклонены к плоскости основания под одинаковым углом, то в основание такой пирамиды можно вписать круг, а высота, опущенная из вершины на основание, падает в центр вписанного в основание круга. Эту теорему можно сформулировать и так: Теорема 5.1. Если все апофемы пирамиды равны, то в основание такой пирамиды можно вписать круг, а высота, опущенная из вершины на основание, падает в центр вписанного в основание круга. ![]() По условию (теорема 5) углы КРО, КТО, КМО, КЕО равны. Рассмотрим треугольники КРО, КТО, КМО, КЕО, они прямоугольны и равны (по катету и острому углу, КО - общая и углы КРО, КТО, КМО, КЕО равны по условию). По условию (теорема 5.1) КР, КТ, КМ и КЕ равны, поэтому треугольники КРО, КТО, КМО, КЕО прямоугольные и равны по катету и гипотенузе. Из равенства этих треугольников следует, что их соответствующие стороны ОР, ОТ, ОМ и ОЕ равны, а значит, в четырехугольнике ABCD есть такая точка, которая равноудалена от его сторон, то есть в него можно вписать круг. Теорема 6. Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности. Эту теорему можно сформулировать и так: Теорема 6.1. Если все боковые ребра пирамиды равны, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности. ![]() Углы КВО, КСО, КАО и KDO равны (по условиям теоремы 6). Рассмотрим треугольники КAО, КBО, КCО, КDО, они прямоугольны и равны (по катету и острому углу, КО - общая и углы КАО, КВО, КСО, КDО равны по условию). Доказывая теорему 6.1, также рассмотрим треугольники КAО, КBО, КCО, КDО, они прямоугольны и равны по катету и гипотенузе (КО - общая, КА=КВ=КС=KD по условию теоремы). Из равенствa этих треугольников следует, что их соответствующие стороны ОА, ОВ, ОС и ОD равны, а значит, в основании есть такая точка, которая равноудалена от вершин четырехугольника ABCD, то есть около него можно описать окружность. |
|
|